Abstract

We present the resonant Raman spectra of a single-wall carbon nanotube inside a multiwall boron nitride nanotube (SWNT@BNNT). At EL = 1.58 eV, SWNT@BNNT exhibited resonant Raman spectra at 807 (ωBN) and 804 cm-1 (ωGr). Their intensities almost disappeared at EL = 2.33 eV. We assigned ωBN to the out-of-plane BN phonon mode that coupled with ωGr. At EL = 4.66 eV, the G+ and G- bands of the SWNT@BNNT red-shifted 3.8 cm-1 compared with the SWNT, suggesting the interwall interactions between the in-plane modes of SWNT and BNNT. Moreover, the E2g mode of the BNNT in SWNT@BNNT appeared at 1370.3 ± 0.1 cm-1, which is undistinguishable for EL < 3 eV because of the overlap with the D band frequency. The assignment of the present Raman spectra was confirmed through the first-principles calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call