Abstract
We study interacting active Brownian particles (ABPs) with a space-dependent swim velocity via simulation and theory. We find that, although an equation of state exists, a mechanical equilibrium does not apply to ABPs in activity landscapes. The pressure imbalance originates in the flux of polar order and the gradient of swim velocity across the interface between regions of different activity. An active–passive patch system is mainly controlled by the smallest global density for which the passive patch can be close packed. Below this density a critical point does not exist and the system splits continuously into a dense passive and a dilute active phase with increasing activity. Above this density and for sufficiently high activity the active phase may start to phase separate into a gas and a liquid phase caused by the same mechanism as motility-induced phase separation of ABPs with a homogeneous swim velocity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.