Abstract

We consider the family of nearest neighbour interacting particle systems on mathbb {Z} allowing 0, 1 or 2 particles at a site. We parametrise a wide subfamily of processes exhibiting product blocking measure and show how this family can be “stood up” in the sense of Balázs and Bowen (Ann Inst H Poincaré Probab Stat 54(1):514–528, 2018). By comparing measures, we prove new three variable Jacobi style identities, related to counting certain generalised Frobenius partitions with a 2-repetition condition. By specialising to specific processes, we produce two variable identities that are shown to relate to Jacobi triple product and various other identities of combinatorial significance. The family of k-exclusion processes for arbitrary k are also considered and are shown to give similar Jacobi style identities relating to counting generalised Frobenius partitions with a k-repetition condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.