Abstract

Solving inverse problems without the use of derivatives or adjoints of the forward model is highly desirable in many applications arising in science and engineering. In this paper we propose a new version of such a methodology, a framework for its analysis, and numerical evidence of the practicality of the method proposed. Our starting point is an ensemble of overdamped Langevin diffusions which interact through a single preconditioner computed as the empirical ensemble covariance. We demonstrate that the nonlinear Fokker--Planck equation arising from the mean-field limit of the associated stochastic differential equation (SDE) has a novel gradient flow structure, built on the Wasserstein metric and the covariance matrix of the noisy flow. Using this structure, we investigate large time properties of the Fokker--Planck equation, showing that its invariant measure coincides with that of a single Langevin diffusion, and demonstrating exponential convergence to the invariant measure in a number of settings. We introduce a new noisy variant on ensemble Kalman inversion (EKI) algorithms found from the original SDE by replacing exact gradients with ensemble differences; this defines the ensemble Kalman sampler (EKS). Numerical results are presented which demonstrate its efficacy as a derivative-free approximate sampler for the Bayesian posterior arising from inverse problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call