Abstract

The recessive male sterile mutation haync2 of Drosophila melanogaster fails to complement certain beta 2-tubulin and alpha-tubulin mutations, suggesting that the haywire product plays a role in microtubule function, perhaps as a structural component of microtubules. The genetic interaction appears to require the presence of the aberrant product encoded by haync2, which may act as a structural poison. Based on this observation, we have isolated ten new mutations that revert the failure to complement between haync2 and B2tn. The revertants tested behaved as intragenic mutations of hay in recombination tests, and fell into two phenotypic classes, suggesting two functional domains of the hay gene product. Some revertants were hemizygous viable and less severe than haync2 in their recessive phenotype. These mutations might revert the poison by restoring the aberrant product encoded by the haync2 allele to more wild-type function. Most of the revertants were recessive lethal mutations, indicating that the hay gene product is essential for viability. These more extreme mutations could revert the poison by destroying the ability of the aberrant haywirenc2 product to interact structurally with microtubules. Flies heterozygous for the original haync2 allele and an extreme revertant show defects in both the structure and the function of the male meiotic spindle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.