Abstract

A simple mechanical model is formulated to study the dynamics of rubble-pile asteroids, formed by the gravitational re-accumulation of fragments after the collisional breakup of a parent body. In this model, a rubble-pile consists of N interacting fragments represented by rigid ellipsoids, and the equations of motion explicitly incorporate the minimal degrees of freedom necessary to describe the attitude and rotational state of each fragment. In spite of its simplicity, our numerical examples indicate that the overall behavior of our model is in line with several known properties of collisional events, like the energy and angular momentum partition during high velocity impacts. Therefore, it may be considered as a well defined minimal model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call