Abstract

AbstractThe quality of precipitation (P) and potential evapotranspiration (PET) data greatly affects the hydrological modeling performance. Considerable attention has been paid to identifying the influence of biased P or PET inputs independently. However, few studies have explored the joint interaction of biases in P and PET inputs on hydrological simulations. Here, we investigate the mutual compensation of P and PET biases on the performance of two widely used conceptual hydrological models, the Xinanjiang model and the Probability Distributed Model. P and PET from HYREX (HYdrological Radar EXperiment) and CAMELS‐GB (Catchment Attributes and Meteorology for Large‐sample Studies in Great Britain) data sets are collected over five catchments with varying characteristics in Great Britain. Different biases are added to these original time series to generate 6560 biased input scenarios. The results suggest that there is a certain compensational relationship between the biases in P and PET inputs to reproduce desirable streamflow simulations. A new hydrological proxy named Compensational Interaction Angle (CIA) is identified and found to be stationary with various modeling periods, as well as stable with different hydrological models despite model equifinality. Further, the CIA highly relates to the long‐term climate aridity ratio. The catchments with greater aridity have larger CIAs. This study offers a fresh perspective to analyze the input errors in hydrological modeling. The results can help to better understand P and PET interactions in hydrological modeling, and guide the selection/evaluation/bias‐correction of P and PET data sets for hydrological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.