Abstract
Denitrification is a significant regulator of nitrogen pollution in diverse landscapes but is difficult to quantify. We examined relationships between denitrification potential and soil and landscape properties to develop a model that predicts denitrification potential at a landscape level. Denitrification potential, ancillary soil variables, and physical landscape attributes were measured at study sites within urban, suburban, and forested environments in the Gwynns Falls watershed in Baltimore, Maryland in a series of studies between 1998 and 2014. Data from these studies were used to develop a statistical model for denitrification potential using a subset of the samples (N = 188). The remaining measurements (N = 150) were used to validate the model. Soil moisture, soil respiration, and total soil nitrogen were the best predictors of denitrification potential (R2adj = 0.35), and the model was validated by regressing observed vs. predicted values. Our results suggest that soil denitrification potential can be modeled successfully using these three parameters, and that this model performs well across a variety of natural and developed land uses. This model provides a framework for predicting nitrogen dynamics in varying land use contexts. We also outline approaches to develop appropriate landscape-scale proxies for the key model inputs, including soil moisture, respiration, and soil nitrogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.