Abstract

The evolution, interaction and scattering of 2Npoint vortices grouped into equal and opposite pairs (N-dipoles) on a rotating unit sphere are studied. A new coordinate system made up of centres of vorticity and centroids associated with each dipole is introduced. With these coordinates, the nonlinear equations for an isolated dipole diagonalize and one directly obtains the equation for geodesic motion on the sphere for the dipole centroid. When two or more dipoles interact, the equations are viewed as an interacting billiard system on the sphere—charged billiards—with long-range interactions causing the centroid trajectories to deviate from their geodesic paths. Canonical interactions are studied both with and without rotation. For two dipoles, the four basic interactions are described asexchange-scattering,non-exchange-scattering,loop-scattering(head on) and loop-scattering (chasing) interactions. For three or more dipoles, one obtains a richer variety of interactions, although the interactions identified in the two-dipole case remain fundamental.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.