Abstract
AbstractBose–Einstein condensation predicts that, under certain conditions (in particular extremely low temperature), all particles will condense into one state. Some of the physical background is surveyed in this chapter. The Gross–Pitaevskii approximation for dilute systems is also discussed. Variational problems appear here naturally, as the quantum mechanical ground state is of interest. In connection with positive temperature, related probabilistic models, based on interacting Brownian motions in a trapping potential, are introduced. Again, large deviation techniques are used to determine the mean occupation measure, both for vanishing temperature and large particle number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.