Abstract

We study the ground state of a large bosonic system trapped in a symmetric double-well potential, letting the distance between the two wells increase to infinity with the number of particles. In this context, one should expect an interaction-driven transition between a delocalized state (particles are independent and all live in both wells) and a localized state (particles are correlated, half of them live in each well). We start from the full many-body Schrodinger Hamiltonian in a large-filling situation where the on-site interaction and kinetic energies are comparable. When tunneling is negligible against interaction energy, we prove a localization estimate showing that the particle number fluctuations in each well are strongly suppressed. The modes in which the particles condense are minimizers of nonlinear Schrodinger-type functionals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call