Abstract

Machine learning approaches can build a computational model to predict cognitive workload levels by using electroencephalogram (EEG) feature inputs at the same time instant. However, when the EEG signals are recorded on different people, the accuracy of such a model could be impaired due to its incapability of fitting varied statistical distributions across different individuals. To this end, we propose an individual-independent workload estimator, a cascade ensemble of multilayer autoencoders to tackle the individual difference within the EEG features. It could assess the workload levels of an unseen subject by adapting the EEG data recorded from non-overlapped existing subjects. We first construct a deep stacked denoising autoencoder to abstract EEG features from a specific individual. Its shallow weights are optimized with individual-specific geometrical information of the features. Then, to find generalizable feature properties, we introduce Q-statistics to measure the independence between base learners. Finally, a regularized extreme learning machine is used as a cascade meta-classifier to fuse and filter high-level EEG abstractions and determine workload levels. We employ databases from two different experiments to validate our approach. The proposed framework can lead to acceptable accuracy and computational complexity compared to several existing workload classifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.