Abstract

Presynaptic mitochondria not only absorb but also release Ca2+ during high frequency stimulation (HFS) when presynaptic [Ca2+ ] is kept low (<500nm) by high cytosolic Ca2+ buffer or strong plasma membrane calcium clearance mechanisms under physiological external [Ca2+ ]. Mitochondrial Ca2+ release (MCR) does not alter the global presynaptic Ca2+ transients. MCR during HFS enhances short-term facilitation and steady state excitatory postsynaptic currents by increasing vesicular release probability. The intra-train MCR may provide residual calcium at interspike intervals, and thus support high frequency neurotransmission at central glutamatergic synapses. Emerging evidence indicates that mitochondrial Ca2+ buffering contributes to local regulation of synaptic transmission. It is unknown, however, whether mitochondrial Ca2+ release (MCR) occurs during high frequency synaptic transmission. Confirming the previous notion that 2μm tetraphenylphosphonium (TPP+ ) is a specific inhibitor of the mitochondrial Na+ /Ca2+ exchanger (mNCX), we studied the role of MCR via mNCX in short-term plasticity during high frequency stimulation (HFS) at the calyx of Held synapse of the rat. TPP+ reduced short-term facilitation (STF) and steady state excitatory postsynaptic currents during HFS at mature calyx synapses under physiological extracellular [Ca2+ ] ([Ca2+ ]o =1.2mm), but not at immature calyx or at 2mm [Ca2+ ]o . The inhibitory effects of TPP+ were stronger at synapses with morphologically complex calyces harbouring many swellings and at 32°C than at simple calyx synapses and at room temperature. These effects of TPP+ on STF were well correlated with those on the presynaptic mitochondrial [Ca2+ ] build-up during HFS. Mitochondrial [Ca2+ ] during HFS was increased by TPP+ at mature calyces under 1.2mm [Ca2+ ]o , and further enhanced at 32°C, but not under 2mm [Ca2+ ]o or at immature calyces. The close correlation of the effects of TPP+ on mitochondrial [Ca2+ ] with those on STF suggests that mNCX contributes to STF at the calyx of Held synapses. The intra-train MCR enhanced vesicular release probability without altering global presynaptic [Ca2+ ]. Our results suggest that MCR during HFS elevates local [Ca2+ ] near synaptic sites at interspike intervals to enhance STF and to support stable synaptic transmission under physiological [Ca2+ ]o .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.