Abstract

Few-walled carbon nanotube (FWCNT) is composed of a few coaxial shells of CNTs with different diameters. The shells in one tube can slide relatively to each other under external forces, potentially leading to regulated electrical properties, which are never explored due to experimental difficulties. In this work, the electromechanical response induced by inter-shell sliding of individual CNTs is studied and revealed the linear electrical current variation for the first time. Based on centimeter-long FWCNTs grown through chemical vapor deposition, controllable and reversible inter-shell sliding is realized while simultaneously recording the electrical current. Reversible and linear current variation with inter-shell sliding is observed, which is consistent with the proposed inter-shell tunneling model. Further, a silk fibroin-assisted transfer technique is developed for long CNTs and realized the fabrication of FWCNT-based flexible devices. Tensile stress can be applied on the FWCNTs@silk film encapsulated in elastic silicone to induce inter-shell sliding and thus controls electrical current, which is demonstrated to serve as a new human-machine interface with high reliability. Besides, it is foreseen that the electromechanical behaviors induced by inter-layer sliding in 1D nanotubes may also be extended to 2D layered materials, shedding new light on the fabrication of novel electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call