Abstract

Many established technologies are limited in analyzing the executive functions in motion, especially while walking. Functional near-infrared spectroscopy (fNIRS) fills this gap. The aim of the study is to investigate the inter-session reliability (ISR) of fNIRS-derived parameters at the prefrontal cortex while walking in people with multiple sclerosis (MS) and healthy control (HC) individuals. Twenty people with MS/HC individuals walked a 12 m track back and forth over 6 min. The primary outcomes were the absolute and relative reliability of the mean, slope coefficient (SC), and area under the curve (A) of the oxy-/deoxyhemoglobin concentrations (HbO/HbR) in the Brodmann areas (BA) 9/46/10. The SC and the A of HbO exhibited a fair ISR in BA10 in people with MS. For the mean and A of the HbR, almost all areas observed revealed a fair ISR. Overall, the ISR was better for HbR than HbO. A fair to excellent ISR was found for most BA of the prefrontal cortex in HC individuals. In total, the ISR of the analyzed fNIRS-derived parameters was limited. To improve the ISR, confounders such as fatigue and mind wandering should be minimized. When reporting the ISR, the focus should be on the mean/A rather than SC.

Highlights

  • IntroductionPeople suffering from inflammatory autoimmune diseases, such as multiple sclerosis (MS), often exhibit impaired locomotion [1]

  • Human bipedal locomotion is a central determinant of participation in daily life

  • We found the highest cHbO in the l/rDLPFC46 on both days in people with multiple sclerosis (MS) (Table 2)

Read more

Summary

Introduction

People suffering from inflammatory autoimmune diseases, such as multiple sclerosis (MS), often exhibit impaired locomotion [1]. These impairments can be diverse (e.g., ataxia, spasticity, or muscle weakness) and depend on the affected area in the brain or spinal cord [2]. To treat these deficits more efficiently, it is necessary to understand the underlying motor and cognitive mechanisms. One concept that comprises both mechanisms is gait automaticity. The interaction of automaticity and executive control are essential for executing movements.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call