Abstract

Distributed Space Systems (DSS) are gaining prominence in the space industry due to their ability to increase mission performance by allowing cooperation and resource sharing between multiple satellites. In DSS where communication between heterogeneous satellites is necessary, achieving autonomous cooperation while minimizing energy consumption is a critical requirement, particularly in sparse constellations with nano-satellites. In order to minimize the functioning time and energy consumed by the Inter-Satellite Links established for satellite-to-satellite communication, their temporal encounters must be anticipated. This work proposes an autonomous solution based on Supervised Learning that allows heterogeneous satellites in circular polar Low-Earth Orbits to predict their close-approach encounters given the Orbital Elements. The model performance is evaluated and compared in two different scenarios: (1) a simplified scenario assuming Kepler orbits and (2) a realistic scenario assuming Simplified General Perturbations 4 orbital model. The obtained results demonstrate a Balanced Accuracy exceeding 95% when compared to realistic data from an available database. This work represents a promising initial stage in developing an alternative approach within the field of DSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.