Abstract

ABSTRACTThis study compared the functional and neural effects of two strength training programmes differing in set configuration. Thirteen participants performed 10 sessions, over a period of 5 weeks, of unilateral leg extensions with different set configurations but with identical work-to-rest ratios for each limb: a traditional configuration (4 sets of 8 repetitions, 10RM load, 3-min pause between sets) and an inter-repetition rest configuration (32 repetitions, 10RM load, 17.4 s of rest between each repetition). Mean propulsive velocity of the traditional sessions was lower than for inter-repetition rest sessions (0.48 ± 0.06 vs. 0.54 ± 0.06 m · s−1; P < 0.001), while perceived exertion was higher (8.3 ± 0.9 and 6.56 ± 1.6 for traditional training and IRT; P = 0.002). One repetition maximum (RM), work with 10RM load, maximum mean propulsive power, maximum voluntary contraction and time to failure with 50% of maximum isometric force improved similarly in both legs (time effect, P < 0.001; effect size range, 0.451–1.190). Time and set configuration did not show significant main effects or interactions for cortical adaptations (motor-evoked potentials, short-interval intracortical inhibition, intracortical facilitation). There were no significant correlations between changes in cortical and peripheral neural adaptations and strength improvement. In conclusion, inter-repetition rest configuration was as effective as traditional training in improving muscle performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call