Abstract

In order to understand the process of executing a voluntary standing movement, the parameters latency (AEA-LT), duration (AEA-DUR) and amplitude (AEA-AMP) of the anticipatory electromyographic (EMG) activity (AEA) in the tibialis anterior muscle, Hoffmann (H) reflex amplitude in the soleus muscle (Sol) prior to the onset of EMG activity in that muscle, and EMG reaction time (EMG-RT) were measured during heel raising from the standing position. The following results were obtained: the three parameters of AEA correlated with EMG-RT in each subject; the average values for all nine normal subjects were r = 0.856 for AEA-DUR, r = 0.448 for AEA-LT and r = -0.215 for AEA-AMP; for the group the mean value of AEA-DUR correlated significantly with that of EMG-RT (r = 0.983, P less than 0.01), while no such significant correlation was observed for AEA-LT; the average value of the AEA-DUR in three slower EMG-RT performers (SLOW-PFM) was significantly longer (P less than 0.05) than that in three faster ones (FAST-PFM), while no significant difference in the AEA-LT was observed; and lastly the total area of the anticipatory suppression of the Sol H reflex amplitude in the SLOW-PFM was greater than that in the FAST-PFM. These results suggest that AEA-DUR, representing postural responses, rather than AEA-LT, reflecting cognitive processes, may have had a close link with EMG-RT, and that the increased suppression in Sol H reflex amplitude originated from the increased anticipatory postural requirement, thus bringing about the EMG-RT delay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call