Abstract

Recent advancements in autonomous mobile robots have led to significant progress in area coverage tasks. However, challenges persist in optimizing the efficiency and computational complexity of complete coverage path planner (CCPP) algorithms for multi-robot systems, particularly in scenarios requiring revisiting or a double pass in specific locations, such as cleaning robots addressing spilled consumables. This paper presents an innovative approach to tackling the double-pass complete coverage problem using an autonomous inter-reconfigurable robot path planner. Our solution leverages a modified Glasius bio-inspired neural network (GBNN) to facilitate double-pass coverage through inter-reconfiguration between two robots. We compare our proposed algorithm with traditional multi-robot path planning in a centralized system, demonstrating a reduction in algorithm iterations and computation time. Our experimental results underscore the efficacy of the proposed solution in enhancing the efficiency of area coverage tasks. Furthermore, we discuss the implementation details and limitations of our study, providing insights for future research directions in autonomous robotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call