Abstract

BackgroundComputer-assisted three-dimensional (3D) planning is increasingly delegated to biomedical engineers. So far, the described fracture reduction approaches rely strongly on the performance of the users. The goal of our study was to analyze the influence of the two different professional backgrounds (technical and medical) and skill levels regarding the reliability of the proposed planning method. Finally, a new fragment displacement measurement method was introduced due to the lack of consistent methods in the literature.Methods3D bone models of 20 distal radius fractures were presented to nine raters with different educational backgrounds (medical and technical) and various levels of experience in 3D operation planning (0 to 10 years) and clinical experience (1.5 to 24 years). Each rater was asked to perform the fracture reduction on 3D planning software.ResultsNo difference was demonstrated in reduction accuracy regarding rotational (p = 1.000) and translational (p = 0.263) misalignment of the fragments between biomedical engineers and senior orthopedic residents. However, a significantly more accurate planning was performed in these two groups compared with junior orthopedic residents with less clinical experience and no 3D planning experience (p < 0.05).ConclusionExperience in 3D operation planning and clinical experience are relevant factors to plan an intra-articular fragment reduction of the distal radius. However, no difference was observed regarding the educational background (medical vs. technical) between biomedical engineers and senior orthopedic residents. Therefore, our results support the further development of computer-assisted surgery planning by biomedical engineers. Additionally, the introduced fragment displacement measure proves to be a feasible and reliable method.Level of EvidenceDiagnostic Level II

Highlights

  • Computer-assisted three-dimensional (3D) planning is increasingly delegated to biomedical engineers

  • The linear regression models show a significant influence of the experience in 3D planning (F(1, 6) = 7.515, p = 0.034), with a R2 of 0.556) as well as a significant influence of the clinical experience (F(1, 4) = 31.282, p < 0.01, with a R2 of 0.887) to the reduction performance

  • The analysis shows an improvement of the transformation shift (TFS) by 0.943 mm per year of experience in 3D planning and by 0.560 mm per year of clinical experience

Read more

Summary

Introduction

Computer-assisted three-dimensional (3D) planning is increasingly delegated to biomedical engineers. Different approaches are described in the literature and used in daily life for simulating fracture reduction: (1) free-hand visual alignment, (2) the incorporation of the mirrored contralateral side to facilitate reduction [23,24,25,26,27], (3) the use of a statistical shape model (SSM) [28], or (4) attempts to use automatic alignment algorithms [29] None of these methods is fully automated or yet applicable in the clinical use and all rely strongly on the performance of the users itself, which could influence treatment decisions and outcome. This way, the technical expertise becomes available for the (not technology affine) surgeons but thereof depend on a close cooperation between them and the engineer to transfer medical knowledge

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call