Abstract

Abstract To support the deployment of DEMO wall protection strategy, the development of comprehensive analyses is essential to understand the implications of transient perturbations on the plasma shape control and on the vertical stability, some of the most critical aspects to be considered in elongated plasmas. Therefore, the design activities of the DEMO limiter structures need the deep understanding of the effects induced by transient plasma perturbations coupled with one of the most severe load conditions occurring in tokamaks, the Vertical Displacement Event (VDE). Since Electromagnetic (EM) loads during VDE phases are among the DEMO limiters design drivers, this study focuses on predictive simulations of the final plasma position and of EM loads following a VDE. For this purpose, a multi-tokamaks study supported by the construction of an inter-machine database containing experimental transient plasma perturbations and VDEs from JET and ASDEX Upgrade (AUG) has been carried out. It aims at the characterization of some transient plasma perturbations that may lead to high control efforts by the vertical stability system in terms of variations of the plasma internal parameters and vertical displacements. Consequently, such experimental transient plasma perturbations have been properly scaled to DEMO reference geometries with different magnetic configurations, to be simulated in terms of plasma dynamical behaviour by means of MAXFEA code. Finally, initial predictive EM loads on DEMO limiter structures will be discussed in the case of VDEs following plasma perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.