Abstract

Water solubility is perhaps the single most important physical–chemical property determining the environmental fate and effects of organic compounds. Its determination is particularly challenging for compounds with extremely low solubility, frequently referred to as “difficult-to-test” substances and having solubility’s generally less than 0.1 mg/L. The existing regulatory water solubility test for these compounds is the column elution method. Its applicability, however, is limited, to non-volatile solid or crystalline hydrophobic organic compounds. There currently exists no test guideline for measuring the water solubility of very hydrophobic liquid, and potentially volatile, difficult-to-test compounds. This paper describes a “slow-stir” water solubility methodology along with results of a ring trial across five laboratories evaluating the method’s performance. The slow-stir method was applied to n-hexylcyclohexane, a volatile, liquid hydrophobic hydrocarbon. In order to benchmark the inter-laboratory variability associated with the proposed slow-stir method, the five laboratories separately determined the solubility of dodecahydrotriphenylene, a hydrophobic solid compound using the existing column elution guideline. Results across the participating laboratories indicated comparable reproducibility with relative standard deviations (RSD) of 20% or less reported for each test compound – solubility method pair. The inter-laboratory RSD was 16% for n-hexylcyclohexane (mean 14 µg/L, n = 5) using the slow-stir method. For dodecahydrotriphenylene, the inter-laboratory RSD was 20% (mean 2.6 µg/L, n = 4) using the existing column elution method. This study outlines approaches that should be followed and the experimental parameters that have been deemed important for an expanded ring trial of the slow-stir water solubility method.

Highlights

  • Aqueous solubility is a fundamental physical–chemical property that strongly influences the distribution, fate and effects of chemicals upon release into the environment [1]

  • In order to fill the gap that currently exists for measuring the water solubility of very hydrophobic liquid compounds, this study describes a “slow-stir” method and the results of a ring trial test on a single difficult-to-test compound across five laboratories

  • Errors related to measuring the water solubility of very hydrophobic compound such as dodecahydrotriphenylene usually tend to overestimate the true water solubility due to the presence of microcrystals or similar solid particles resulting in observed enrichment above true solubility [21]

Read more

Summary

Introduction

Aqueous solubility is a fundamental physical–chemical property that strongly influences the distribution, fate and effects of chemicals upon release into the environment [1]. Along with other physical chemical properties (e.g. vapor pressure, octanol–water partition coefficient) are required as part. This guideline only partially addresses the testing of so called “difficult-to-test” substances [8] for which the laboratory determination of water solubility can be challenging. Difficultto-test substances include pure compounds, isomeric mixtures and complex chemical mixtures of related compounds. They are typically very hydrophobic, have characteristically low water solubility (< 0.1 mg/L) and may be volatile (high Henry’s Law constant) and biodegradable. That review includes a decision tree to aid in selection of the most appropriate method for measuring a compound’s water solubility based on its physical state, relative hydrophobicity and other properties such as volatility

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.