Abstract

Understanding the relation between the motion of the center of mass (COM) and the center of pressure (COP) is important to understand the underlying mechanisms of maintaining body equilibrium. One way to investigate this is to stabilize COM by fixing the joints of the human and looking at the corresponding COP reactions. However, this approach constrains the natural motion of the human. To avoid this shortcoming, we stabilized COM without constraining the joint movements by using an external stabilization method based on inverted cart-pendulum system. Interestingly, this method only stabilized COM of a subgroup of participants and had a destabilizing effect for others which implies significant variability in inter-individual postural control. The aim of this work was to investigate the underlying causes of inter-individual variability by studying the postural parameters of quiet standing before the external stabilization. Eighteen volunteers took part in the experiment where they were standing on an actuated cart for 335 s. In the middle of this period we stabilized their COM in anteroposterior direction for 105 s. To stabilize the COM, we controlled the position of the cart using a double proportional–integral–derivative controller. We recorded COM position throughout the experiment, calculated its velocity, amplitude, and frequency during the quiet standing before the stabilization, and used these parameters as features in hierarchical clustering method. Clustering solution revealed that postural parameters of quiet standing before the stabilization cannot explain the inter-individual variability of postural responses during the external COM stabilization. COM was successfully stabilized for a group of participants but had a destabilizing effect on the others, showing a variability in individual postural control which cannot be explained by postural parameters of quiet-stance.

Highlights

  • Maintaining postural equilibrium is fundamental for standing upright

  • On the other hand, clustering based on the RMS amplitude of center of mass (COM), RMS velocity of COM, and area under the curve (AUC) of high frequency range (HF) COM motion separated the participants into Group 1 with participants 2, 3, 4, 5, 6, 11, 14 and into Group 2 with participants 1, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18

  • This indicates that the clustering analysis based on the selected parameters of quiet standing did not separate the participants into those that were stabilized by our method and those that were destabilized

Read more

Summary

Introduction

Maintaining postural equilibrium is fundamental for standing upright. This is achieved by coordinating motor commands and responses based on multiple sensory inputs and biomechanical constraints (Nashner, 1997). Measures of body sway as a movement of center of mass (COM) or center of pressure (COP) are commonly used to evaluate the performance of standing posture (Palmieri et al, 2002). Investigating underlying mechanisms of postural control requires understanding of the relationship between COM and COP. COP variations are assumed to correct the unstable COM position back to the equilibrium (Johansson et al, 1988; Peterka, 2000). In contrast to traditional theories, other studies found that an additional purpose of the COP oscillations is to increase the sensory information flow from the environment (van Emmerik and van Wegen, 2002; Mochizuki et al, 2006; Stergiou et al, 2006; Carpenter et al, 2010)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.