Abstract
Abstract. Theories of emotion regulation posit the existence of individual differences in emotion dynamics. Current multi-subject time-series models account for differences in dynamics across individuals only to a very limited extent. This results in an aggregation that may poorly apply at the individual level. We present the exploratory method of latent class vector-autoregressive modeling (LCVAR), which extends the time-series models to include clustering of individuals with similar dynamic processes. LCVAR can identify individuals with similar emotion dynamics in intensive time-series, which may be of unequal length. The method performs excellently under a range of simulated conditions. The value of identifying clusters in time-series is illustrated using affect measures of 410 individuals, assessed at over 70 time points per individual. LCVAR discerned six clusters of distinct emotion dynamics with regard to diurnal patterns and augmentation and blunting processes between eight emotions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.