Abstract
Summary We study the inter-dinucleotide distance distributions in the human genome, both in the whole-genome and protein-coding regions. The inter-dinucleotide distance is defined as the distance to the next occurrence of the same dinucleotide. We consider the 16 sequences of inter-dinucleotide distances and two reading frames. Our results show a period-3 oscillation in the protein-coding inter-dinucleotide distance distributions that is absent from the whole-genome distributions. We also compare the distance distribution of each dinucleotide to a reference distribution, that of a random sequence generated with the same dinucleotide abundances, revealing the CG dinucleotide as the one with the highest cumulative relative error for the first 60 distances. Moreover, the distance distribution of each dinucleotide is compared to the distance distribution of all other dinucleotides using the Kullback-Leibler divergence. We find that the distance distribution of a dinucleotide and that of its reversed complement are very similar, hence, the divergence between them is very small. This is an interesting finding that may give evidence of a stronger parity rule than Chargaff’s second parity rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.