Abstract
Most fine ambient particulate matter (PM2.5)-based epidemiological models use globalized concentration-response (CR) functions assuming that the toxicity of PM2.5 is solely mass-dependent without considering its chemical composition. Although oxidative potential (OP) has emerged as an alternate metric of PM2.5 toxicity, the association between PM2.5 mass and OP on a large spatial extent has not been investigated. In this study, we evaluate this relationship using 385 PM2.5 samples collected from 14 different sites across 4 different continents and using 5 different OP (and cytotoxicity) endpoints. Our results show that the relationship between PM2.5 mass vs. OP (and cytotoxicity) is largely non-linear due to significant differences in the intrinsic toxicity, resulting from a spatially heterogeneous chemical composition of PM2.5. These results emphasize the need to develop localized CR functions incorporating other measures of PM2.5 properties (e.g., OP) to better predict the PM2.5-attributed health burdens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.