Abstract

Three advanced methodologies were performed during Landsat-9 on orbit and initialization and verification (OIV): Extended Pseudo Invariant Calibration Sites Absolute Calibration Model Double Ratio (ExPAC Double Ratio) and Extended Pseudo Invariant Calibration Sites (EPICS)-based cross-calibration utilizing stable regions in Northern African desert sites (EPICS-NA) and a global scale (EPICS-Global). The development of these three techniques was described using uncertainties analysis. The ExPAC Double Ratio was derived based on the ratio between ExPAC model prediction and satellite measurements for Landsat-8 and Landsat-9. The ExPAC Double Ratio can be performed to determine differences between sensors ranging from visible, red edge, near-infrared, to short-wave infrared wavelengths. The ExPAC Double Ratio and EPICS-based inter-comparison ratio uncertainties were determined using the Monte Carlo Simulation. It was found that the uncertainty levels of 1–2% can be achieved. The EPICS-based cross-calibration results were derived using two targets: EPICS-NA and EPICS-Global, with uncertainties of 1–2.2% for all spectral bands. The inter-comparison results between Landsat-9 and Landsat-8 during the OIV period using the three advanced methods were well within 0.5% for all spectral bands except for the green band, which showed sub 1% agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.