Abstract
Domain adaptation (DA) aims to train a robust predictor by transferring rich knowledge from a well-labeled source domain to annotate a newly coming target domain; however, the two domains are usually drawn from very different distributions. Most current methods either learn the common features by matching inter-domain feature distributions and training the classifier separately or align inter-domain label distributions to directly obtain an adaptive classifier based on the original features despite feature distortion. Moreover, intra-domain information may be greatly degraded during the DA process; i.e., the source data samples from different classes might grow closer. To this end, this paper proposes a novel DA approach, referred to as inter-class distribution alienation and inter-domain distribution alignment based on manifold embedding (IDAME). Specifically, IDAME commits to adapting the classifier on the Grassmann manifold by using structural risk minimization, where inter-domain feature distributions are aligned to mitigate feature distortion, and the target pseudo labels are exploited using the distances on the Grassmann manifold. During the classifier adaptation process, we simultaneously consider the inter-class distribution alienation, the inter-domain distribution alignment, and the manifold consistency. Extensive experiments validate that IDAME can outperform several comparative state-of-the-art methods on real-world cross-domain image datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.