Abstract

One of the brilliant ideas of John Spence when he saw the first diffraction patterns from the Linac Coherent Light Source was that one could solve the crystallographic phase problem by utilising the intensities between Bragg peaks. Because these intensities are due to the Fourier transform of the shape of the crystal, the approach came to be known as “shape-transform phasing.”Shape-transform phasing was developed over the next ten years and formed the basis for many other interesting ideas and pursuits. Here we describe the current best implementation of the original idea using a lattice occupancy formalism and show that certain types of crystal defects can also be modelled via this approach, allowing the molecular structure to be recovered from the additional information offered by the inter-Bragg intensities from these crystal defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.