Abstract
Our study analyses satellite and land-based observations of the Yakutsk region centred at the Lena watershed, an area characterised mainly by continuous permafrost. Using monthly solutions of the Gravity Recovery And Climate Experiment satellite mission, we detect a mass increase over central Siberia from 2002 to 2007 which reverses into a mass decrease between 2007 and 2011. No significant mass trend is visible for the whole observation period. To further quantify this behaviour, different mass signal components are studied in detail: (1) inter-annual variation in the atmospheric mass, (2) a possible effect of glacial isostatic adjustment (GIA), and (3) hydrological mass variations. In standard processing the atmospheric mass signal is reduced based on the data from numerical weather prediction models. We use surface pressure observations in order to validate this atmospheric reduction. On inter-annual time scale the difference between the atmospheric mass signal from model prediction and from surface pressure observation is $$<$$ 4 mm in equivalent water height. The effect of GIA on the mass signal over Siberia is calculated using a global ice model and a spherically symmetric, compressible, Maxwell-viscoelastic earth model. The calculation shows that for the investigated area any effect of GIA can be ruled out. Hence, the main part of the signal can be attributed to hydrological mass variations. We briefly discuss potential hydrological effects such as changes in precipitation, river discharge, surface and subsurface water storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.