Abstract

The geographic remoteness, the lack of remote sensing capabilities, and the lack of appropriate environmental sensors make the detection of seasonal trends or inter-annual variations in sea-ice microbial biomass or production processes within the pack ice of the Antarctic extremely rare. The evaluation of their inter-annual variability in the context of ice dynamics and trends in regional climate has not been possible. During the late winters of 2001 (July–August) and 2002 (August–September) we assessed sea-ice dynamics, sea-ice characteristics, and biomass of sea-ice microbiota along the Western Antarctic Peninsula. These two winters were marked by large contrasts in the dates of initial ice formation (late June in 2001 and April in 2002), which resulted in differences in the physical pack-ice characteristics. Chlorophyll a (chl a) content in ice cores differed between the study years, with 2002 having 10-fold higher chl a content. The difference in ice-core chl a content is best explained by the timing of ice formation that leads to less phytoplankton scavenging from the water column and a lack of transfer of solar energy into the pack-ice ecosystem. Such a tractable atmosphere ocean–ice–biota coupling may help in evaluating underlying processes responsible for long-term trends in recruitment cycles of upper trophic levels as well as future projections on the response of the Antarctic marine ecosystems to variability in local climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call