Abstract

The structure of the intervascular pit membranes of four dicotyledonous species (Salix sachalinensis, Betula platyphylla var. japonica, Acer mono, and Fraxinus mandshurica var. japonica) was examined by field-emission scanning electron microscopy. The intervascular pit membranes of F. mandshurica var. japonica had thin surface layers and a dense middle layer, while no similar middle layer was detectable in the other three species. In F. mandshurica var. japonica, the entire area of each pit membrane was densely covered with microfibrils. In the other three species, by contrast, openings were found in the pit membranes. In some of the intervascular pit membranes of S. sachalinensis, B. platyphylla var. japonica, and A. mono, microfibrils were sparsely interwoven in small areas of the pit membranes and openings of up to several hundred nanometers in diameter were present in such regions. These porous regions tended to be located in peripheral areas of pit membranes. In S. sachalinensis and B. platyphylla var. japonica, ethanol-soluble extracts, whose chemical nature and function remain unknown, were heavily distributed over the intervascular pit membranes. Our observations suggest that the structure of intervascular pit membranes is more complicated than has previously been acknowledged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call