Abstract

Plants continuously interact with soil microbiota. These plant-soil feedbacks (PSFs) are considered a driving force in plant community dynamics. However, most PSF information comes from inter-family studies, with limited information on possible causes. We studied the variation of PSFs between and within grass species and identified the soil microbes that are associated with the observed PSFs effects. We grew monocultures of ten cultivars of three grass species (Lolium perenne, Poa pratensis, Schedonorus arundinaceus) using a two-phase PSF experiment. We measured plant total biomass to determine PSFs between and within species and correlated it with sequenced rhizosphere bacteria and fungi. In the soil conditioning phase, grass species developed microbial legacies that affected the performance of other grass species in the feedback phase. We detected overall negative interspecific PSFs. While we show that L. perenne and P. pratensis increased their performance respectively in conspecific and heterospecific soils, S. arundinaceus was not strongly affected by the legacies of the previous plant species. Contrary to our expectation, we found no evidence for intraspecific variation in PSFs. Bacterial taxa associated with PSFs included members of Proteobacteria, Firmicutes, Verrucomicrobia and Planctomycetes whereas fungal taxa included members of Ascomycota. Our results suggest differences in PSF effects between grass species, but not between cultivars within species. Thus, in the studied grass species, there might be limited potential for breeding on plant traits mediated by PSFs. Furthermore, we point out potential microbial candidates that might be driving the observed PSF effects that could be further explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.