Abstract
The photo-physics of methyl 2-hydroxy-9H-1-carbazazole carboxylate (MPCC) in different solvents and cyclohexane-trifluoroethanol (TFE) mixtures has been studied by means of absorption, fluorescence, fluorescence excitation spectra, time dependence spectrofluoremetery and AM1 semi-empirical quantum mechanical calculations. Only one small Stoke’s shifted fluorescence band is observed under all the environments, indicating that the geometry of the molecule is not changed much on excitation to the first singlet state (S 1) and excited state intramolecular proton transfer (ESIPT) is not viable both in the ground (S 0) and S 1 states at the room temperature. AM1 calculation shows that the ESIPT is still endothermic in S 1 state. Single exponential decay is observed in the fluorescence from MPCC in all the solvents except acetonitrile and methanol. This suggests that in these two solvents, at least two different conformers are present in the S 0 state, whose absorption spectra are not different from each other. Spectral characteristics of MPCC in cyclohexane as a function of TFE have shown a slight blue shift in the λ max ab, decrease in the ε max, red shift in the λ max fl and decrease in the φ fl. This suggests that intermolecular hydrogen bonding is playing a major role in the deactivation of the fluorescence intensity than the intramoleuclar hydrogen bonding (IHB). Spectral properties of MPCC were also studied as a function of acid–base concentrations. p K a values for different prototropic equilibriums were determined in S 0 and S 1 states and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.