Abstract
Mussel foot proteins (Mfps) secreted in the byssal plaque of marine mussels are widely researched for their relevance to mussel adhesion in water. As the abundant residue in the amino acid sequences of major adhesive proteins, 3,4-dihydroxyphenylalanine (Dopa) or its catecholic moiety plays a key role in both Mfp binding to surface and cohesive cross-linking of Mfps in byssal plaques. The binding performance of an Mfp significantly depends on the content and redox state of Dopa, whereas the types of interaction vary in line with different surface chemistries and pH conditions. Thorough understanding of mussel adhesion from a molecular perspective is crucial to promote the application of synthetic mussel-bionic adhesives. This article presents a brief review of the research progress on the adhesion mechanisms of Mfps, which further emphasizes the contributions of Dopa-mediated interactions and considers other amino acids and factors. The involved inter- and intramolecular interactions are responsible for not only the diverse adhesion capacities of an adhesive byssal plaque as mussel’s adhesion precursor but also the formation and properties of the plaque structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.