Abstract

Abstract. Rainfall is known as the main water replenishment in dryland ecosystems, and rainfall partitioning by vegetation reshapes the spatial and temporal distribution patterns of rainwater entry into the soil. The dynamics of rainfall partitioning have been extensively studied at the inter-event scale, yet very few studies have explored its finer intra-event dynamics and the relating driving factors for shrubs. Here, we conducted a concurrent in-depth investigation of all rainfall partitioning components at inter- and intra-event scales for two typical xerophytic shrubs (Caragana korshinskii and Salix psammophila) in the Liudaogou catchment of the Loess Plateau, China. The event throughfall (TF), stemflow (SF), and interception loss (IC), and their temporal variations within the rainfall event, as well as the meteorological factors and vegetation characteristics, were systematically measured during the 2014–2015 rainy seasons. Our results showed that C. korshinskii had significantly higher SF percentage (9.2 %) and lower IC percentage (21.4 %) compared to S. psammophila (3.8 % and 29.5 %, respectively), but their TF percentages were not significantly different (69.4 % vs. 66.7 %). At the intra-event scale, TF and SF of S. psammophila were initiated (0.1 vs. 0.3 h and 0.7 vs. 0.8 h) and peaked (1.8 vs. 2.0 h and 2.1 vs. 2.2 h) more quickly, and TF of S. psammophila lasted longer (5.2 vs. 4.8 h) and delivered more intensely (4.3 vs. 3.8 mm h−1), whereas SF of C. korshinskii lasted longer (4.6 vs. 4.1 h) and delivered more intensely (753.8 vs. 471.2 mm h−1). For both shrubs, rainfall amount was the most significant factor influencing inter-event rainfall partitioning, and rainfall intensity and duration controlled the intra-event TF and SF variables. The C. korshinskii with larger branch angle, more small branches, and smaller canopy area, has an advantage over S. psammophila to produce SF more efficiently. The S. psammophila has lower canopy water storage capacity to generate and peak TF and SF earlier, and it has larger aboveground biomass and total canopy water storage of individual plants to produce higher IC compared to C. korshinskii. These findings contribute to the fine characterization of shrub-dominated ecohydrological processes, and improve the accuracy of water balance estimation in dryland ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.