Abstract

We theoretically study dissociative ionization of H$_2^+$ exposed to strong linearly polarized few-cycle visible, near-infrared and midinfrared laser pulses. We find rich energy-sharing structures in the combined electron and nuclear kinetic energy spectra with features that are a priori at odds with simple energy conservation arguments. We explain the structures as interferences between wave packets released during different optical cycles, and during the same optical cycle, respectively. Both inter- and intracycle interference structures are clearly visible in the joint energy spectra. The shapes of the interference structures depend on the dynamics leading to the double continuum, and carry sub-femtosecond information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.