Abstract

This study aimed to investigate the inter- and intraobserver reproducibility of quantitative T1 (qT1) measurements using manual and semiautomatic region of interest (ROI) placements. We hypothesized the usefulness of the semiautomatic method, which utilizes a three-dimensional (3D) anatomical relationship between the myometrium and other tissues, for minimizing ROI placement variation, thereby improving qT1 reproducibility compared to the manual approach. The semiautomatic approach, which considered anatomical relationships, was expected to enhance reproducibility by reducing ROI placement variabilities. This study recruited 23 healthy female volunteers. Data with variable flip angle (VFA) and inversion recovery were acquired using 3D-spoiled gradient echo and spin echo sequences, respectively. T1 maps were generated with VFA. Manual and semiautomatic ROI placements were independently conducted. Mean qT1 values were calculated from the T1 maps using the corresponding pixel values of the myometrial ROI. Inter- and intraobserver reproducibility of qT1 values was investigated. The inter- and intraobserver reproducibility of qT1 values was evaluated by calculating the coefficient of variation (CoV). Further, reproducibility was evaluated with inter- and intraobserver errors and intraclass correlation coefficients (ICCs). Bland-Altman analysis was utilized to compare the results, estimate bias, and determine the limits of agreement. The mean inter- and intraobserver CoV of the qT1 values for semiautomatic ROI placement was significantly lower than those for manual ROI placement (p < 0.05 and p < 0.01, respectively). ICCs for semiautomatic ROI placement were greater than those for manual ROI placement. Further, the mean inter- and intraobserver errors for semiautomatic ROI placement were significantly lower than those for manual ROI placement (p < 0.05 and p < 0.01, respectively). Semiautomatic ROI placement demonstrated high reproducibility of qT1 measurements compared with manual methods. Semiautomatic ROI placement may be useful for evaluating uterine qT1 with high reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.