Abstract
This paper presents a data-driven approach for capturing the temporal variations in user search behaviour by modeling the dynamic query relationships using query-log data. The dependence between different queries (in terms of the query words and latent user intent) is represented using hypergraphs which allows us to explore more complex relationships compared to graph-based approaches. This time-varying dependence is modeled using the framework of probabilistic graphical models. The inferred interactions are used for query keyword suggestion - a key task in web information retrieval. Preliminary experiments using query logs collected from internal search engine of a large health care organization yield promising results. In particular, our model is able to capture temporal variations between queries relationships that reflect known trends in disease occurrence. Further, hypergraph-based modeling captures relationships significantly better compared to graph-based approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.