Abstract

We study the problem of controllable citation text generation by introducing a new concept to generate citation texts. Citation text generation, as an assistive writing approach, has drawn a number of researchers’ attention. However, current research related to citation text generation rarely addresses how to generate the citation texts that satisfy the specified citation intents by the paper’s authors, especially at the beginning of paper writing. We propose a controllable citation text generation model that extends a pre-trained sequence to sequence models, namely, BART and T5, by using the citation intent as the control code to generate the citation text, meeting the paper authors’ citation intent. Experimental results demonstrate that our model can generate citation texts semantically similar to the reference citation texts and satisfy the given citation intent. Additionally, the results from human evaluation also indicate that incorporating the citation intent may enable the models to generate relevant citation texts almost as scientific paper authors do, even when only a little information from the citing paper is available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.