Abstract

Selective leaf removal in the proximity of grape clusters is a useful practice to manage fruit diseases and otherwise improve fruit composition. The current recommendation in the eastern United States is to create a fruit zone with one to two leaf layers and to focus removal on the “morning sun” side of the canopy. We evaluated a more intense and an earlier application of fruit-zone leaf thinning relative to current recommendations to determine whether additional benefits could be obtained without a penalty of impaired berry pigmentation or other ill effects of abundant grape exposure. Fruit secondary metabolites and berry temperature were monitored in two different field experiments conducted with ‘Cabernet Sauvignon’ in the northern Shenandoah Valley American Viticultural Area (AVA) of Virginia. One experiment evaluated the effects of no leaf removal, prebloom removal of four basal leaves per shoot, and prebloom removal of eight basal leaves per shoot. The other experiment evaluated the effects of no leaf removal and postfruit set removal of six basal leaves per shoot. On average, exposed grapes heated to ≥30 °C for a 126% longer period (53 hours) than shaded grapes in the postveraison period (from color development through harvest). However, postveraison grape temperatures did not remain above provisional, critical temperature thresholds of either 30 or 35 °C for as long as they did in studies conducted in sunnier, more arid climates. There were minimal differences in berry temperature between east- and west-exposed grapes in the northeast/southwest-oriented rows of the experimental vineyard. Regardless of implementation stage, leaf removal consistently increased total grape phenolics measured spectrophotometrically, and either increased or had no impact on anthocyanins relative to no leaf removal. Grape phenolics and anthocyanins were unaffected by canopy side. Berry total phenolics were increased and anthocyanins were at least maintained in fruit zones void of leaf layers—a canopy attribute that reduces bunch rot in humid regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.