Abstract

Spent bleaching earth (SBE), a waste by-product produced from the bleaching step of edible oil by montmorillonite clays (bleaching earth), causes serious public health and environmental problems. Accordingly, in this study, SBE was pyrolyzed to yield mineral carbon materials (SBE@C) and cobalt oxide (Co3O4) was loaded to improve the active site of those materials. Due to the carrier function of SBE@C, ultra-fine Co3O4 quantum dots (QDs) (2–6 nm) were homogeneously and robustly immobilized onto SBE@C. The obtained adsorbent exhibited high regeneration performance and an outstanding adsorption capacity (253.36 mg/g). It can be attributed to the surface complexation of cobalt with TC being the dominant process contributing to adsorption behavior. Further, Co3O4 QDs-SBE@C still maintained adequate sorption capacity at a broad range of pH values and in the presence of co-occurring ions. These results suggested the significant application potential of SBE and demonstrated the efficiency of using Co3O4 QDs-SBE@C for wastewater remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call