Abstract

We propose an approach based on random matrix theory to calculate the temporal second-order intensity correlation function ${g}^{(2)}(t)$ of the radiation emitted by random lasers and random fiber lasers. The multimode character of these systems, with a relevant degree of disorder in the active medium, and a large number of random scattering centers substantially hinder the calculation of ${g}^{(2)}(t)$. Here, we apply in a photonic system the universal statistical properties of Ginibre's non-Hermitian random matrix ensemble to obtain ${g}^{(2)}(t)$. Excellent agreement is found with time-resolved measurements for several excitation powers of an erbium-based random fiber laser. We also discuss the extension of the random matrix approach to address the statistical properties of general disordered photonic systems with various Hamiltonian symmetries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.