Abstract

The impact of parasitism on population dynamics and community structure of marine animals is an area of growing interest in marine ecology. The effect of a microphallid trematode, Maritrema novaezelandensis on the survival of its amphipod host, Paracalliope novizealandiae, was investigated by a laboratory study combined with data from field collections. In the laboratory, the effect of infection level on host mortality was investigated. Four groups of individuals were exposed to 0 (control), 5 (low), 25 (moderate) and 125 (high) cercariae, respectively, and their survival was monitored during a 10-day period. The distribution and migration of unencysted cercariae within the host were examined during dissections 6 and 48 h post infection. Parasite-induced mortality under field conditions was investigated by quantifying the relationship between parasite load and host body size. In the laboratory experiment, a highly significant decrease in host survival was observed for amphipods in the moderate and high infection groups relative to that of control amphipods. Parasite-induced mortality was most pronounced in the first two days post infection suggesting that the increased mortality is due to penetration of host cuticula and migration of cercariae within the host. Field data showed a monotonic increase in the mean parasite load with the body size of the amphipods, indicating that M. novaezelandensis does not severely affect P. novizealandiae-populations under normal field conditions. However, a decrease in the variance-to-mean ratio for the largest size-classes indicates that heavily infected individuals are removed from the population as predicted by the experimental infections. The results from the laboratory study in conjunction with our knowledge of the transmission strategy of the parasite emphasize the potential effect of M. novaezelandensis on its amphipod host population during episodes of high temperature causing the rapid and massive release of cercariae from snail intermediate hosts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call