Abstract

We study the output emission statistics of a random continuous-wave Raman fiber laser. The signal evolution is governed by a generalized nonlinear Schrödinger equation (NLSE) with inserted gain. The statistics are close to the Rayleigh one, and the deviations are caused by the Kerr nonlinearity. To characterize the deviations, we analytically find the mean of the squared output signal intensity, based on the kinetic theory. We show qualitative agreement with available experimental data and supplement the results with numerical calculations. With the limit of small gain, the kinetic theory gives a finite answer for the mean of squared intensity in the first and the second order with respect to small nonlinearity. The result is consistent with the fact that the NLSE is integrable in the case of zero gain and is applicable to any generalized NLSE if the inserted terms are effectively small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.