Abstract

Trivalent erbium Er 3+ (4f 11), as a dopant in the laser host material Y 3Al 5O 12 (YAG), is a well-known and popular activator ion in a medium having optical, thermal, and mechanical properties suitable for numerous photonic applications. Despite its technological importance, a detailed intensity analysis of transitions between individual Stark components has not previously been attempted. This work presents an intensity analysis for Er:YAG, achieving good agreement between measured and calculated Stark-component transition intensities. Ambiguities in the parametrization due to different possible orientations of the quantization axes are addressed. Use of the “vector crystal field” parametrization resolves additional ambiguities that arise in the transition intensity parameters for low symmetry systems, and allows for a new definition for polarization-resolved Judd-Ofelt parameters, which can have wide-ranging applicability for polarized multiplet-to-multiplet intensity calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.