Abstract

The use of Ag impurity in Er-doped ZnO films deposited by AC magnetron sputtering with a low growth rate has increased the emission intensity at λ = 1535–1540 nm. An increase in the deposition rate and in the temperature of substrates, as well as the use of Li and N+ impurities, led to a considerable increase in the intensity of the line with λ = 376–379 nm in the case of doping with rare-earth ions (Er, Tm), which makes it possible to use this semiconductor for creation of devices for the short-wavelength spectral region. Introduction of additional impurities in Er-doped ZnO films deposited on bulk ZnO crystals with increasing deposition rate and temperature caused an increase in the intensity of the line with λ = 1535–1540 nm. The photoluminescence spectra of ZnO films doped with Tm (ZnO ) exhibited intense emission of lines with λmax = 377 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call