Abstract

The intensity of free radical processes and the regulation of NADP-isocitrate dehydrogenase (EC 1.1.1.42; NADP-IDH) activity have been studied in the cytoplasmic fraction of normal and ischemized rat myocardium. Chemiluminescence parameters, such as the light sum (S) of slow flash and the tangent of the kinetic curve slope angle (tanalpha1), which characterize the intensity of free radical processes, were increased in ischemia 2.1- and 20.0-fold, respectively. The slow flash intensity (Imax) was increased 22-fold. The contents of lipid peroxidation products--diene conjugates and malonic dialdehyde--were increased 11.9- and 4.7-fold, respectively, suggesting pronounced oxidative stress. Using homogenous enzyme preparations of NADP-IDH isolated from the normal and experimentally ischemized rat myocardium, a number of catalytic properties of the enzyme were characterized for normal and pathologic conditions. NADP-IDH from the normal and ischemized myocardium had the same electrophoretic mobility and was regulated similarly by Fe2+, Cu2+, Zn2+, and also with succinate and fumarate. However, under normal and pathologic conditions NADP-IDH was different in the affinity for substrates and in the sensitivity to inhibitory effects of hydrogen peroxide, reduced glutathione, and of Ca2+. The degree of synergy in the enzyme inhibition with Fe2+ and H2O2 was less pronounced in ischemia. The inhibitory effect of the reaction product 2-oxoglutarate was higher under normal conditions than in ischemia (the Ki values were 0.22 and 0.75 mM, respectively). The specific features of the NADP-IDH regulation in ischemia are suggested to promote the stimulation of the enzyme functioning during increased level of free radical processes, and this seems to be important for NADPH supplying for the glutathione reductase/glutathione peroxidase antioxidant system of cardiomyocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.