Abstract

The cross-peak intensity for a S = 1/2, I = 1/2 spin system in two-dimensional HYSCORE spectra of single-crystals and powders is analyzed. There is a fundamental difference between these two cases. For single crystals, the cross-peak intensity is distributed between the two (+, +) and (+, -) quadrants of the hyperfine sublevel correlation (HYSCORE) spectrum by the ratio c(2):s(2) (C. Gemperle, G. Aebli, A. Schweiger, and R. R. Ernst, J. Magn. Reson. 88, 241 (1990)). However, for powder spectra another factor becomes dominant and governs cross-peak intensities in the two quadrants. This factor is the phase interference between modulation from different orientations of the paramagnetic species. This can lead to essentially complete disappearance of the cross-peak in one of the two (+, +) or (+, -) quadrants. In the (+, +) quadrant, cross-peaks oriented parallel to the main (positive) diagonal of the HYSCORE spectrum are suppressed, while the opposite is true in the (+, -) quadrant where cross-peaks nearly perpendicular to the main (negative) diagonal of HYSCORE spectra are suppressed. Analytical expressions are derived for the cross-peak intensity profiles in powder HYSCORE spectra for both axial and nonaxial hyperfine interactions (HFI). The intensity is a product of two terms, one depending only on experimental parameter (tau) and the other only on the spin Hamiltonian. This separation provides a rapid way to choose tau for maximum cross-peak intensity in a region of interest in the spectrum. For axial HFI, the Hamiltonian-dependent term has only one maximum and decreases to zero at the canonical orientations. For nonaxial HFI, this term produces three separate ridges which outline the whole powder lineshape. These three ridges have the majority of the intensity in the HYSCORE spectrum. The intensity profile of each ridge resembles that observed for axial HFI. Each ridge defines two principal values of the HFI similar to the ridges from an axial HFI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.