Abstract
This paper presents a novel method for intensity normalization of DaTSCAN SPECT brain images. The proposed methodology is based on Gaussian mixture models (GMMs) and considers not only the intensity levels, but also the coordinates of voxels inside the so-defined spatial Gaussian functions. The model parameters are obtained according to a maximum likelihood criterion employing the expectation maximization (EM) algorithm. First, an averaged control subject image is computed to obtain a threshold-based mask that selects only the voxels inside the skull. Then, the GMM is obtained for the DaTSCAN-SPECT database, performing space quantization by populating it with Gaussian kernels whose linear combination approximates the image intensity. According to a probability threshold that measures the weight of each kernel or “cluster” in the striatum area, the voxels in the non-specific region are intensity-normalized by removing clusters whose likelihood is negligible.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.